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Abstract: The production of certain goods is associated with emission of
poliution, and this causes both flow and stock externalities. Flow externalities are
defined as the difference between social and private marginal costs. In addition
pollution tends to aggregate, and the disutility associated with this is defined as
the stock externality. We derive optimal corrective taxes in the presence of both
externalities as explicit feedback control laws even when the decay of aggregated
pollution is subject the a general stochastic process. Hence this represents
a truly adaptive approach to regulation of the environment. The model applied is
completely general in the state variable, pollution, and quadratic in the conizol
variable. There are no assumptions about separability in the objective function
which is to maximize social welfare defined as the sum of consumers’ and
producers’ surplus adjusted for the externalities,

1 INTRODUCTION

The objective is to maximize social welfare defined as
the sum of consumers’ and producers’ surplus corrected
for externalities when the decay of the pollution causing
externalities is subject to stochasticity. Flow external-
ity is defined as the difference between social and private
marginal costs whereas stock externality is defined as any
disutility associated with the aggregated level of pollu-
tion. The corrective tax, which is the control variable in
this problem, is defined as the difference between con-
sumer and producer price of the product causing emis-
sions. There is & fixed amount of emission associated
with each unit produced.

2  THE STOCHASTIC MODEL

Let z denote production and a denote the aggregated
level of pollution. To each unit produced there is a fixed
amount of emission, 8z, and the decay of poliution is a
general function, f(a). The time change in the aggre-
gated level of pollution is then

da = [§z — fla)l dt + {a)dw
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where {1 is a general volatility function and the term dw
is a standard Wiener process (independent and identi-
cally distributed) with variance di and zero mean. Let
the demand for & be given by
Diz) =pg — p12

and private and social marginal costs are

MC?P =

MO =

Cpo + 1 T,
Cs0 + Ca1 L.

The parameters in the demand and cost functions can
in principle be general functions in a. Private marginal
costs represent the private supply curve which also is the
producer price and the demand curve is the consumer
price. Qur conirol variable is a corrective unit tax de-
noted 7. As the corrective tax equals the difference be-
tween the consumer and producer price, production, z,
in market equilibrium can be written as a linear function
in 7:
T =g — 21T

where
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T'his inserted into (6) yields simple algebraic expressions
for the corrections to the control variable, 7, order by
order without doing integration. Note that

)m =206(2) T+ D Mo

1<k<m—1

where subscripts denote the order of the perturbation
term. This yields the following results

g = Qo=4v(R - S, (9)
ey = Ql—né—#()
= 4y(Py~ 81) — (4 +7p),
2y — 7 = Qa—(ui+m)
= 4y(Pp— S3) — (if +1}),
WMol = AP = Mor = 3 e Mo
<k<m—1
m > 2,

A prerequisite for this periurbation scheme to be mean-
ingful is that Fh—Sp = 0. If we let )y be the appropriate
value in the deterministic case, then 7, = 0 for the level
of the pollution that defines the optimal equilibrium in
the deterministic case. The constant terms £, P, P
and so on can then be found by setting the right hand
sides of the eguations in the perturbation scheme (9)
equal to zerc when T = xp, = argmax(5) and solv-
ing. This is the simplest modification of the determin-
istic case, as it leads to the same predefined optimum.
The optimal control law can be written

(51 + Lo2(A) mp(A)]
¥(A) [Fo(A) — To(A)]

+0(e%),

(16)
where T is the deterministic solution given by Eq. (8)
and mp(4) = %% (A4;79). The fanction W is the social
beneflt funetion and Ap = argmax 5.

T{A) = 1o(4) + 1 +

2.2 'THE STOCHASTIC MODEL WITH DIS-

COUNTING
The purpose of this section is to find the feedback rule
for the optimal corrective tax when discounting of the
future is included through a constant discount rate.
By taking the derivative of (4) we get

!
% (W' -+ 71502W" =W - 5" (11)

The problem is facilitated if we use the variable £{A) =
F{A) — 7{A) instead of 7. Note that £ d! represents the
expected change in the aggregated pollution level during
dt. A plot of £ against A is the well-known phase-plane
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in the determinstic analogue of the model (¢ — Q). We

then have from the maximum principle (7 = .___5'2":")_
WA} - u(4)
£(A) = et “HZ)
) 2v(4)

and (11} can be rewritten
i
[1€* + (7)) = 2 +rp— 5 (%) - 5.

An optimal ordering of the terms implies that as many
corrections as possible appear as first-order corrections.
Thus we avoid resorting to higher orders in order to en-
compass the corrections. The optimal ordering s given
by
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With the erdering r ~ g™, m > 1, the solution resulting
from the ordering above will still be valid. The optimal
ordering implies
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where Fh, P, Po,... are constants of integration. The
constants of integration have to be determined on the
basis of certain additional requirements, e.g. barrier and
regalarity requirements and choice of the lower limit of
integration (A = Ap).

Let, us consider the case of an exogeneous upper limit
on the level of poilution above which the corrective tax
is so high that all emission is banned:
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The tax, T, is smooth at the transition A=A Thus
we get the following when A is used as the lower limit of
integration in {12},
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where the bar indicates that the value A is inserted. The
terms £y, £, &g, ... are now completely determined and
hence the optimal tax 7o = Fo—&p, 71 = Fi—§;, Tar =
~& 44 for M 2 2. The solution given by {12} is uniformly
valid whenever Fy > 5(A). In the opposite case there are
intervals in which the solution of {12) becomes complex.
In that case it is necessary to determine a singular per-
turbation scheme that handles these intervals, but this
leads to technicalities that we avoid here. For a discus-
sion of this case see Sandal and Steinshamn (1997).

The explicit feedback control law for the optimal cor-
rective tax to second order can now be written

{4} = 7p(A) + T1(4) +0(=%)

for A< Aand 7= T lor A > A where

(13)

TolA) = FolA) £ 52%%#ﬂ,
A - y ’_Yéoﬁl
L TP T
1 PUNE &
'HﬂQO>F”“+§”mmqﬂ
- A
T‘Z-";’(A)%(A) ./1 ma(u} o
ma(A) = ol A)+ 27(A)Eo(A) = B(A) - 2y(A)To(A}.

The feedback rules given by (10) and (13) are now
operational functions that can be used by the authorities
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to determine the optimal corrective tax given that they
have the relevant economic and technical information,
that is; estimates of the demand and cost functions and
the decay of pollution.

The expression in {13} can also be applied to inves-
tigate the qualitative effects of stochasticity upon the
optimal corrective tax. In particular, wher the slopes
of the demand and cost curves are independent of the
aggregated level of poilution such that rj = 0, 71 can be
rewritien

71(A) CRENC

A

e / molz) dz,
2v(A)6o{A) Ja (%)

1t is seen that the volatility term appears only in the first
term in square brackets, and therefore this is the term
of interest here. Furthermore, by defining ® = —o?mg
this term can be interpreted as the cost of uncertainty.
The variance, 02, is measured as unit of mass squared
{e.g. kg.?) and my) is measured as value per unit of mass
squared {e.g. $/ke.Z). Therefore,  is a measure of value
(or cost), e.g. $, where —myg can be interpreted as the
cost per unit of variance. If ®(A4) < &(A4) for some
A < A, that is, the cost of uncertainty is lower for a
lower pollution level, then it is optimal to increase the
corrective tax (reduce emissions). This will probably be
the usual case. It is, however, also possible to think of
cases where ®(A4) > ®(A4) due to the functional form of
o, and in this case the presence of stochasticity wili call
for incressed emissions along an optimal path which is
an interesting and guite counterintuitive case.

REFERENCES
Nayfeh, A H., Perturbation Methods, Wiley & Sons,
New York, 1973.

Sandal, LK. and SI. Steinshamn, A Stochastic
Teedback Model for Optimal Management of Re-
newable Resources, Natural Resource Modeling
10(1): 31-52, 1997,



